US009280446B2

a2 United States Patent 10) Patent No.: US 9,280,446 B2

Abadi et al. 45) Date of Patent: Mar. 8, 2016
(54) METHOD FOR FINDING ALL VALID (56) References Cited
INTERPROCEDURAL EXECUTION PATHS
ON COBOL IN POLYNOMIAL TIME U.S. PATENT DOCUMENTS
. 8,141,064 B2* 3/2012 Chipman 717/154
(71) Applicant: International Business Machines 8,271,956 B2 9/2012 Howland et al.
Corporation, Armonk, NY (US) 2011/0066829 Al* 3/2011 Tyeetal. ..o 712/226
2013/0031531 Al 1/2013 Keynes et al.
(72) Inventors: Aharon Abadi, Eilat (IL); Moria Abadi, OTHER PUBLICATIONS
Petah Tikva (IL); Ran Etting(?r, Tel Aviv Thomas Reps “On the Sequential Nature of Interprocedural Pro-
(IL); Yishai Feldman, Tel Aviv (IL) gram-Analysis Problems” Aug. 1996 Acta Informatica vol. 33 Issue
S pp. 1-16.*
(73) Assignee: International Business Machines ngs et al., “Precise Interprocedural Dataflow Analysis Via Graph
Corporation, Armonk, NY (US) Reachability”, POPL *95 Proceedings of the 22nd ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pp.
. 49-61, 1995.
(*) Notice: SubJeCt, to any dlSCIalmer{ the term of this Thomas Reps, “On the Sequential Nature of Interprocedural Pro-
patent is extended or adjusted under 35 gram-Analysis Problems”, Acta Informatica Aug. 1996, vol. 33,
U.S.C. 154(b) by 68 days. Issue 5, pp. 739-757.
Nielson et al., “Interprocedural Control Flow Analysis”, Program-
(21) Appl. No.: 14/194,821 ming Languages and Systems Lecture Notes in Computer Science
vol. 1576, 1999, pp. 20-39.
. Gutzmann et al., “Towards Path-Sensitive Points-To Analysis”, Sev-
(22) Filed: Mar. 3, 2014 enth IEEE International Working Conference on Source Code Analy-
sis and Manipulation, 2007. SCAM 2007, pp. 59-68.
(65) Prior Publication Data
* cited by examiner
US 2015/0248342 Al Sep. 3, 2015
Primary Examiner — Anna Deng
(51) Int.Cl (57) ABSTRACT
GO6F 9/44 (2006.01) Disclosed are methods for finding all valid paths ina COBOL
GOG6F 11736 (2006.01) program. These methods are performed in polynomial time,
GO6F 9/45 (2006.01) allowing them to be scaled to accommodate large COBOL
(52) US.CL programs. As the methods find all valid paths in COBOL
CPC GOGF 11/364 (2013.01); GOGF 8/4435 program code, by traversing and marking the nodes of the
(2013.01) program upon being traversed. Accordingly, all usable and
(58) Field of Classification Search reachable code is indicated and marked. This increases safety

CPC GO6F 11/364; GOGF 8/4435
USPC ittt 717/128, 131
See application file for complete search history.

Scan Nodes 202

NO

Arrive at new nade- Is
the node unmarked?
204

STOP for
that node
206

1. Mark Node with current index
number

2. Increase Index by 1

3. CheckNode Type 208

Pending
Nodes? 2073

Is the node an internal
node? 210

Move ta
successor
nodes 212

NO__TO BLOCK 234

when working with the code, as removal or alteration of such
valid code is indicated, and thus, made unlikely.

11 Claims, 13 Drawing Sheets

TO BLOCK 212

Has Called paragraph
(first node) been
Visited? 216

Continue to
successor node
of Called
paragraph and
scan Called
paragraph 218

NO

Has End of
Paragraph (EOP)
been visited? 220

TO BLOCK 206

Scan from paragraph entry node
to EOP nodes of the current

the next
paragraphs until: 1) arrival at
entry of unvisited paragraph, OR
2)arrival at EOP 222

Arrival at entry of unvisited Arrival at EOP 226
paragraph 224

Enter EOP 228

TO BLOCK 204

U.S. Patent

N

USER

Mar. 8, 2016 Sheet 1 0f 13
Server 110
COBOL
Program
111
D
C—2
-
40

FIG.1

US 9,280,446 B2

Applications Server
100

APP 102

U.S. Patent Mar. 8, 2016 Sheet 2 of 13 US 9,280,446 B2

Scan Nodes 202
FIG. 2A

NO

Arrive at new node- Is STOP f

£ » the node unmarked? that odr
504 at node
- 206

Pending
Nodes? 207a

1. Mark Node with current index
number

2. Increase Index by 1

3. Check Node Type 208

END 207

o

YES i
Is the node an internal
Move to node? 210
successor
nodes 212

Is the node a CALL node?
214

NO TO BLOCK 234

U.S. Patent

TO BLOCK 212

Continue to
successor node
of Called
paragraph and
scan Called
paragraph 218

Mar. 8, 2016

Sheet 3 of 13

US 9,280,446 B2

Has Called paragraph
(first node) been
visited? 216

NO

Has End of
Paragraph (EOP)

TO BLOCK 206
been visited? 220

Scan from paragraph entry node
to EOP nodes of the current
paragraph AND to the next
paragraphs until: 1) arrival at
entry of unvisited paragraph, OR
2) arrival at EOP 222

A

Arrival at entry of
paragraph 224

unvisited Arrival at EOP 226

v

TO BLOCK 204

Enter EOP 228

ccc

FIG. 2B

U.S. Patent Mar. 8, 2016 Sheet 4 of 13 US 9,280,446 B2

Cccc

A 4
Look for all call nodes (c,,......... , ¢) which
were visited BUT RESUME node was NOT

visited 230

Was one of call nodes

(ST , ¢) visited after
the current paragraph

entry? OR There are not
any nodes, k=0 232

YES NO
A
Go To Block 202 with (cy,......... , Go To Block 202 with
AND the FALL-THROUGH (Chyomey &) 236
paragraph (node) 234

FIG. 2C

U.S. Patent Mar. 8, 2016 Sheet 5 of 13 US 9,280,446 B2

Z-ENTRY

Z-EOP

A-ENTRY

CALL A

RESUME CALL A

A-EOP

B-ENTRY

FIG. 3A

U.S. Patent Mar. 8, 2016 Sheet 6 of 13 US 9,280,446 B2

Z-ENTRY

Z-EOP

A-ENTRY

CALL A

RESUME CALL A

A-EOP

B-ENTRY

FIG. 3B

U.S. Patent Mar. 8, 2016 Sheet 7 of 13 US 9,280,446 B2

Z-ENTRY

> | Z-EOP

A-ENTRY

CALL A

RESUME CALL A

A-EOP

B-ENTRY

FIG. 3C

U.S. Patent Mar. 8, 2016 Sheet 8 of 13 US 9,280,446 B2

Z-ENTRY

> | Z-EOP

A 4
3| A-ENTRY

/

CALL A

RESUME CALL A

A-EOP

B-ENTRY

FIG. 3D

U.S. Patent Mar. 8, 2016 Sheet 9 of 13 US 9,280,446 B2

Z-ENTRY

> | Z-EOP

3| A-ENTRY

/
\

CALL A

RESUME CALL A

A-EOP

B-ENTRY

FIG. 3E

U.S. Patent Mar. 8, 2016 Sheet 10 of 13 US 9,280,446 B2

Z-ENTRY

> | Z-EOP

3| A-ENTRY

\ CALL Edge

CALL A

RESUME CALL A

A-EOP

B-ENTRY

FIG. 3F

U.S. Patent Mar. 8, 2016 Sheet 11 of 13 US 9,280,446 B2

Z-ENTRY

> | Z-EOP

3| A-ENTRY

\ CALL Edge

CALL A

41

RESUME CALL A

A Return Edge
A-EOP

FALL-THROUGH Edge
A

B-ENTRY

FIG. 3G

U.S. Patent Mar. 8, 2016 Sheet 12 of 13

Z-ENTRY

> | Z-EOP

3| A-ENTRY

\ CALL Edge

CALL A

41

RESUME CALL A

A Return Edge
A-EOP

FALL -THROUGH Edge
A

8 | B-ENTRY

FIG. 3H

US 9,280,446 B2

U.S. Patent Mar. 8, 2016 Sheet 13 of 13 US 9,280,446 B2

Z-ENTRY

> | Z-EOP

3| A-ENTRY

\ CALL Edge

CALL A

41

RESUME CALL A

A / Return Edge

A-EOP

FALL-THROUGH Edge
A

8 | B-ENTRY

v

FIG. 3I

US 9,280,446 B2

1
METHOD FOR FINDING ALL VALID
INTERPROCEDURAL EXECUTION PATHS
ON COBOL IN POLYNOMIAL TIME

BACKGROUND

The present invention, in some embodiments thereof,
relates to COBOL (Common Business Oriented Language)
programs, and, more specifically, but not exclusively, to
methods for scanning valid paths of COBOL programs.

When working with computer programs, all valid interpro-
cedural execution paths in the program should be identified.
In doing so, unreachable code, dead code, context-sensitive
data flow analysis, finding static non-termination, and behav-
ior preserving transactions, including procedure extraction
can be identified.

COBOL programs present unique challenges, due to
COBOL’s unique control flow semantics. These semantics
allow paragraphs and sections to be called, using PERFORM
commands, and also executed as normal flow, using GOTO or
FALL-THROUGH commands.

Existing solutions are time consuming and not reliable, as
they cannot find all valid paths, by either checking for such
paths or reporting that code was unreachable, when it was
actually reachable via valid paths. This created unsafe situa-
tions, as this supposedly unreachable code was removed or
altered from the program, resulting in problems with the
program. Moreover, the existing solutions are performed in
exponential time, which is extremely long for performance,
and do not scale to accommodate large programs. An algo-
rithm is performed in exponential time, if T(n) is upper
bounded by 27, where poly(n) is a polynomial in n. More
formally, using big O notation, an algorithm is in exponential
time, if T(n) is bounded by O(2" %), for a constant k.

SUMMARY

Embodiments of the present invention are directed to a
computer-implemented method for scanning valid paths of a
COBOL program to find all reachable code. The method
comprises discovering a plurality of valid executable paths in
a COBOL program, comprising: scanning successive nodes
in the paragraphs of the COBOL program, according to the
order of execution of the COBOL program; marking each
scanned node in accordance with an index; moving to a suc-
cessive node that is not marked, and, analyzing each succes-
sive unmarked node for the type of node and, continuing to
scan each unmarked node in accordance with the type of the
node of the unmarked node, to determine the continued
executable path for scanning, and marking each unmarked
node upon the node being scanned, with an increased value
for the index, until all successive unmarked nodes scanned
have been marked. All unmarked successive nodes are
scanned until only marked nodes are reachable. Additionally,
all of the valid executable paths in the COBOL program
include all reachable code in the reachable paragraphs of the
COBOL program, and all of the reachable code is found in
polynomial time.

Optionally, the method additionally comprises, storing in
storage media, data corresponding to the markings for each of
the nodes scanned.

Optionally, the index includes positive integers.

Optionally, the increased value for the index when marking
an unmarked node is the integer value of the index increased
by the positive integer 1.

10

20

25

40

45

55

60

2

Optionally, when the successive unmarked node type is an
internal node, successor nodes are scanned until an End of
Paragraph (EOP) node is reached.

Optionally, when the successive unmarked node type is a
CALL node for a called paragraph, the nodes of the called
paragraph are scanned, until an End of Paragraph (EOP) EOP
node is reached.

Optionally, when a RESUME node is the successive
unmarked node, and is arrived at after the CALL node was
previously scanned, a return edge is taken to the next succes-
sive unmarked node.

Optionally, when the index value of the CALL node is
greater than the unmarked node entered after the CALL node,
a FALL-THROUGH edge is taken to the next successive
unmarked node.

Embodiments of the present invention are directed to a
computer-implemented method for scanning valid paths of a
COBOL program to find all reachable code. The method
comprises, obtaining a COBOL program including code; tra-
versing the nodes ofthe code consecutively visited, according
to the order of execution of the COBOL program, with the
order of the traversal being indexed, in polynomial time, the
traversal dependent upon the visitation status of the node and
the type of node visited including any return edges; and,
recording an index value for the order of the traversal of the
nodes.

Optionally, when the next unvisited node is an internal
node, successor nodes are consecutively visited until an End
of Paragraph (EOP) node is reached.

Optionally, when the next consecutive node is unvisited
and is a CALL node for a called paragraph, the nodes of the
called paragraph are traversed, until an End of Paragraph
(EOP) node is reached.

Optionally, when a RESUME node is the next consecutive
unvisited node, to and is reached after the CALL node was
previously visited, a return edge is traversed to the next unvis-
ited node.

Optionally, when the index value of the CALL node is
greater than the unmarked node entered after the CALL node,
a FALL-THROUGH edge is traversed to the next unvisited
node.

Embodiments of the present invention are directed to a
computer program product stored on a non-transitory tan-
gible computer readable storage medium for determining
valid executable paths in a COBOL program to find the reach-
able code. The computer program product comprises: com-
puter usable program code for scanning successive nodes in
the paragraphs of the COBOL program, according to the
order of execution of the COBOL program; computer usable
program code for marking each scanned node in accordance
with an index; computer usable program code for moving to
a successive node that is not marked, and, computer usable
program code for analyzing each successive unmarked node
for the type of node and, continuing to scan each unmarked
node in accordance with the type of the node of the unmarked
node, to determine the continued executable path for scan-
ning, and marking each unmarked node upon the node being
scanned, with an increased value for the index, until all suc-
cessive unmarked nodes scanned have been marked; and,
computer usable program code for continuing to scan all
unmarked successive nodes until only marked nodes are
reachable. Additionally, all of the valid executable paths in the
COBOL program include all reachable code in the reachable
paragraphs of the COBOL program, and all of the reachable
code is found in polynomial time.

US 9,280,446 B2

3

Optionally, the computer program product additionally
comprises, computer useable program code for storing in
storage media, data corresponding to the markings for each of
the nodes traversed.

Optionally, the index includes positive integers, and the
increased value for the index when marking an unmarked
node is the integer value of the index increased by the positive
integer 1.

Optionally, when the successive unmarked node type is an
internal node, successor nodes are scanned until an End of
Paragraph (EOP) node is reached.

Optionally, when the successive unmarked node type is a
CALL node of a to called paragraph, the nodes of the called
paragraph are scanned, until an End of Paragraph (EOP) EOP
node is reached.

Optionally, the computer program product additionally
comprises computer usable program code for determining
when a RESUME node is the successive unmarked node, and
is arrived at after the CALL node was previously scanned, a
return edge is taken to the next successive unmarked node.

Optionally, the computer program product additionally
comprises computer usable program code for determining
whether the index value of the CALL node is greater than the
unmarked node entered after the CALL node, a FALL-
THROUGH edge is taken to the next successive unmarked
node.

Unless otherwise defined, all technical and/or scientific
terms used herein have the same meaning as commonly
understood by one of ordinary skill in the art to which the
invention pertains. Although methods and materials similar
or equivalent to those described herein can be used in the
practice or testing of embodiments of the invention, exem-
plary methods and/or materials are described below. In case
of'conflict, the patent specification, including definitions, will
control. In addition, the materials, methods, and examples are
illustrative only and are not intended to be necessarily limit-
ing.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

Some embodiments of the invention are herein described,
by way of example only, with reference to the accompanying
drawings. With specific reference now to the drawings in
detail, it is stressed that the particulars shown are by way of
example and for purposes of illustrative discussion of
embodiments of the invention. In this regard, the description
taken with the drawings makes apparent to those skilled in the
art how embodiments of the invention may be practiced.

In the drawings:

FIG. 1 is a diagram of an exemplary environment in which
embodiments of the present invention operate;

FIGS. 2A-2C form a flow diagram of a process in accor-
dance with embodiments of the present invention;

FIG. 3A is an example COBOL program useful in explain-
ing embodiments of the present invention; and

FIGS. 3B-31 are the program of FIG. 3 A as its pathways are
determined.

Appendix A is attached hereto. This Appendix details
another example of embodiments of the present invention
used to determine all valid paths in the COBOL Program
code.

DETAILED DESCRIPTION OF THE DRAWINGS

Throughout this document, the COBOL programs refer-
enced herein are formed of units known as paragraphs. Each

15

40

45

50

65

4

paragraph is formed of a set of one or more nodes, each node
being a line of the code or statement of the COBOL program.
Each paragraph begins with a label.

Throughout this document, “scanning,” “scans” or “a
scan,” and all forms and derivatives thereof, involve a process
where each node is read in succession according to the order
of the execution of the COBOL program.

Throughout this document, a “valid path” is a path where
all nodes on a sequential path have been scanned only once,
and accordingly, are considered as having been visited.

According to an aspect of some embodiments of the
present invention there are provided methods for finding valid
paths in a COBOL program, for instance, all valid paths in the
COBOL program. The valid paths include COBOL code
which is executable. The method is performed in polynomial
time such that in running time the execution is upper bounded
by a polynomial expression in the size of the input for the
algorithm, in big O notation, i.e., T(n)=0(n"), for a constant k.

Alternatively, some embodiments also disclose polyno-
mial solutions scaled to accommodate large COBOL pro-
grams, such as those COBOL programs with greater than one
million lines of code. As a result of finding all valid paths, all
usable and reachable code is indicated and marked, increas-
ing safety, as removal or alteration of such valid code is
indicated and thus, unlikely.

Some embodiments of the present invention are directed to
creating a context sensitive graph, used to find all valid paths
for all reachable code in the COBOL program. This is
achieved by methods of scanning the COBOL program and
generating a record of the context, for example, by indexing
each scanned on or visited node, and not visiting a node more
than once.

Some embodiments of the present invention are directed to
providing a polynomial time algorithm in order to scan all
valid paths of a COBOL program. The methods disclosed by
some of the embodiments herein, are for scanning valid
COBOL paths, over nodes of paragraphs, in polynomial time.
The disclosed methods run in polynomial time, because when
a called paragraph has already been visited, the process
moves directly to the exit of the paragraph without visiting the
same nodes again. Additionally, the scanning of the valid
paths is performed by storing the call return order in memory,
or other storage media.

During the scanning process, when there is a PERFORM
statement for a called paragraph of the program, if the called
paragraph was not visited, it is not marked as such. The nodes
of the called paragraph continue to be scanned. However,
should the called paragraph have been visited, as indicated by
its nodes being marked, a scan is made from the entry to the
exits of all intermediate paragraphs. For example, the exits
may include GOT()statements, such that a paragraph may
have many exits. The scan continues until there is an arrival at
entry to an unvisited paragraph, as its nodes are unmarked, or
there is an arrival at the end of the paragraph.

Upon arriving at an unvisited paragraph, the paragraph,in
particular, the nodes of the paragraph, is scanned, Upon scan-
ning to the end of the paragraph, it is determined whether
there is a call site corresponding to a return edge that was
previously visited, but notin the resume. If this is the case, the
return edge must also be taken. Additionally, if the call site
was visited after the current paragraph entry, then the FALL-
THROUGH edge must also be taken.

Some embodiments of the present invention are such that
the process of detecting all valid paths in the COBOL pro-
gram use small amounts of memory. This is because each
node or statement of the program, visited by the process of
some embodiments of the present invention, is marked by a

2 <

US 9,280,446 B2

5

single positive integer, with a group of positive integers rep-
resentative of each valid path of reachable code. These inte-
gers and groups thereof, when stored in storage media,
occupy a small amount of the storage media. By using posi-
tive integers and storing in this manner, the valid paths found
by embodiments of the present invention can be easily
recalled.

Before explaining at least one embodiment of the invention
in detail, it is to be understood that the invention is not nec-
essarily limited in its application to the details of construction
and the arrangement of the components and/or methods set
forth in the following description and/or illustrated in the
drawings and/or the

Examples. The invention is capable of other embodiments
or of being practiced or carried out in various ways.

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
or more computer readable medium(s) having computer read-
able program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruction
execution system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-

15

35

40

45

50

55

6

gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks. The computer program instructions may also
beloaded onto a computer, other programmable data process-
ing apparatus, or other devices to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other devices to produce a computer imple-
mented process such that the instructions which execute on
the computer or other programmable apparatus provide pro-
cesses for implementing the functions/acts specified in the
flowchart and/or block diagram block or blocks.

Reference is now made to FIG. 1, which shows an operat-
ing environment for a non-limiting exemplary system 100,
also known as application server, in accordance with some
embodiments of the present invention. The non-limiting
exemplary system 100 is set to determine all valid paths in the
code in order to find all reachable code in the COBOL pro-
gram. The application server 100 is shown linked over a
network 50, either directly or indirectly. The server 100
includes an application (APP) 102, which is, for example,
downloaded by users 20, to their machines, e.g., computer 30,
with display screen 40, over the network 50. The application
102 provides embodiments of the present invention useful in
detecting all valid paths of a COBOL program in order to find
all reachable code in polynomial time.

A second server 110, which stores, for download, and runs
COBOL programs is also linked to the network 50. This
linkage is either directly or indirectly, as per that for the
application server 100.

Embodiments of the present invention may also be stored
on non-transient storage media, represented for example, by
a compact disc 120. This compact disc 120 is adapted to be
operated by the computer 30 of the user 20.

The applications server 100 utilizes hardware, software,
processors and various storage media for performing its

US 9,280,446 B2

7

operations. Similarly, the computer 30 of the user includes
hardware, software, processors and various storage media for
performing its operations.

Attention is now directed to FIGS. 2A-2C, which form a
flow diagram. This flow diagram details a computerized pro-
cess performed by a computer executing the application 102,
or the program stored on the storage media 120, when applied
to a COBOL program, whose code is being executed or run.
The COBOL program is, for example, the COBOL program
111 at the second server 110, or on the user’s computer 30, or
other computer, server, or other computerized device or appa-
ratus, linked to the network 50. The process finds all valid
paths to find all reachable code of a COBOL program in
polynomial time. The process is typically performed auto-
matically and in real time by the computer system analyzing
the requisite COBOL program. The process outputs all of the
valid paths, and accordingly, all of the reachable code of the
COBOL program that was scanned and analyzed. With this
information, the COBOL program can be edited, with dead or
unreachable code accurately identified, allowing it to be
safely removed from the COBOL program. The aforemen-
tioned output is also usable in creating a context sensitive
graph, used to find all valid paths for all reachable code in the
COBOL program.

The process begins at block 202, where the first paragraph,
in particular, the nodes of the paragraph are scanned. At block
204, there is arrival at a new node and a determination if it is
unmarked. If the node is not unmarked, meaning that it is
marked and this node has been visited, the process moves to
block 206, where it stops for that particular node. The process
moves to block 2074, where it is determined whether there are
more pending nodes, and when so, the process returns to
block 202. However, when there are not any pending nodes,
e.g., successor nodes, the process moves to block 2075, where
it ends.

If the node is unmarked, the node has not been visited in
accordance with the process, and the process moves to block
208. At block 208, the node is marked with the current index
number, indicating its having been visited by the process. The
index is increased by the positive integer “1”, and becomes
the new current index, and the node type, for example, an
internal node or a call node, is checked, for example, by being
read.

The process moves to block 210, where it is determined
whether the node is an internal node. When the node is an
internal node, the process moves to block 212 for the succes-
sor node, and ultimately returns to block 204 for processing of
this successor node. When the node is not an internal node, the
process moves to block 214.

At block 214, it is determined whether the node is a call
node. When not a call node, the process moves to block 226,
which is detailed below.

When the node is a call node at block 214, it is determined
when the call node, i.e., the first node of a called paragraph,
has been visited, at block 216. When the call node has not
been visited, i.e., it is unmarked, the process moves to block
218, where the CALL paragraph (nodes therein) are scanned
in succession, in accordance with blocks 212 and 204 for each
node, in accordance with the movement of the process.

Turning back to block 216, when the called paragraph, the
first node thereof, has been visited, i.e., it is marked, the
process moves to block 220. At block 220, it is determined
whether the End Of Paragraph (EOP) node for the called
paragraph has been visited, i.e., it is marked. When it has not
been visited, the process moves to block 206, where the
process stops for that node. When the EOP node for the called

25

30

40

45

50

60

8

paragraph was visited, the process moves to block 222, for the
first node of the next paragraph.

Atblock 222, the process moves from the first or entry node
of the current paragraph, and also to the exits of the current
paragraphs, which may be End of Paragraphs or GOTO state-
ments, until 1) an arrival at the entry of an unvisited para-
graph, at block 224; or, 2) an arrival at the EOP, at block 226,
both of which may occur in parallel.

Moving to block 224, upon arrival at the unmarked entry or
first node of an unvisited paragraph, the process moves to
block 204. The process resumes from block 204 for the entry
or first node.

In parallel to moving to block 224, the process moves to
block 226, where it has arrived at the End of Paragraph (EOP)
node. The EOP node is entered at block 228. The process now
moves to block 230, where call nodes, indicated by c,, ..., c;,
which have not been visited (are unmarked), are identified,
and a search is performed for RESUME nodes, which were
not visited. The RESUME nodes, which have not been visited
are unmarked.

Moving to block 232, from block 230, it is determined
whether one of the call nodes, ¢, . . ., c;, has been visited after
the current paragraph entry, OR whether there are not any call
nodes, where k=0. When yes, the process moves to block 202,
with nodes ¢y, . . ., ¢;, by going through the fall through
paragraph. When no, the process moves to block 202with
nodesc, ..., c, As aresult of the process, all possible valid
pathways and reachable code in the COBOL program has
been found.

The markings of the nodes are stored in storage media, as
positive integers. By storing integers, only small amounts of
storage are needed for storing all of the data for the valid
pathways and reachable code in the COBOL program.

Attention is now directed to FIGS. 3A-31, to show an
exemplary operation of the process, including an algorithm,
operating on a sample COBOL program 300, shown in FIG.
3A. Reference is also made to FIGS. 2A-2C, when describing
FIG. 3.

The process of FIGS. 2A-2C is performed on the COBOL
program 300, and begins at Paragraph Z, at the entry node,
indicated by “Z-Entry.” The index is initially set at “0.” The
flow diagram from blocks 202, 204, 208 to 210 is followed,
with this node marked with “1” in accordance with Index=0+
1. Since this entry node is an internal node, the process moves
to block 212, and back to block 204 for the next node, “Z-EOP
(End of Paragraph), as shown in FIG. 3B.

This Z-EOP node is marked with the current index number
2 (1+1), atblock 208, in F1G. 3C. As the node is an EOP node,
it is not an internal node, and moves through block 210, and is
not a call node, and moves through block 214 to block 226,
where there is an arrival at the EOP (node). The process
moves through blocks 228, 230, to block 232. Here k=0, since
there is nota CALL to the “Z” paragraph. The process moves
to block 234, where the fall through paragraph A, at node
“A-Entry,” is reached, with the process now at block 202 for
the node “A-Entry.”

The process moves through block 204, as “A-Entry,” which
was initially not marked, is now marked with the current
index “3” (2+1), at block 208. As this node is an internal node,
the process moves to block 212 and returns to block 204,
where the “If” node, another internal node, has been arrived
at, as shown in FIG. 3D.

As this “If” node is unmarked, it is now marked with the
current index “4” (3+1), at block 208. As this node is an
internal node, the process moves to block 212 and returns to
block 204, where the “Call A” node, a CALL node, has been
arrived at, as shown in FIG. 3E.

US 9,280,446 B2

9

The process moves from block 204 to 208, to 210, to 212,
to 214 marking the current index at “5” (4+1), at block 208, as
shown in FIG. 3F. The process now moves to block 216,
taking the CALL Edge, where it is determined if the called
paragraph first node has been visited. In this case, the called
paragraph, first node “A-Entry” has been visited, as it is
marked with the index number “3”. Accordingly, the process
moves to block 206, where it stops for the node “CALL A.”
The process moves to block 207a, where there is a pending
node, the A-EOP node, as shown in FIG. 3F.

For the A-EOP node, the process begins at block 202 (from
block 207a), and at block 204 arrives at a new node, which is
unmarked, resulting in going from the “IF” node to the
“A-EOP” node, as shown in FIG. 3F. As this A-EOP node is
unmarked, the process moves to block 208, where it is now
marked with the next index integer “6”. The process moves to
block 210 and 212, where as an EOP node, the A-EOP node
is not an internal node (block 210), and is not a call node
(block 212), such that the process moves to block 226, to
handle this EOP node. The process moves through block 228
to block 230, where in this case the call node, CALL A, was
visited but the RESUME node, RESUME CALL A was not
visited. The CALL node, CALL A is node c,. Accordingly,
the process moves to block 232, where a CALL node (CALL
A with Index Number 5) was visited after the current para-
graph entry (A-Entry with Index Number 3). Accordingly, the
process moves to block 234, where the process moves to
block 202 for both the RESUME CALL A node, taking the
Return Edge, and the B-Entry Node, the FALL-THROUGH
paragraph (block 234), taking the FALL-THROUGH edge, as
shown in FIG. 3G.

The RESUME CALL A node and the B-Entry Node are
now processed contemporaneously at block 202, as shown in
FIG. 3H. For RESUME CALL A node, the process takes the
return edge from A-EOP. From block 202, the process moves
to block 204. The RESUME CALL A node is unmarked,
whereby the process moves to block 208, where it is marked
with the next successive index number “7”. The process now
moves to block 210, where the RESUME CALL A node is an
internal node, so the process moves to block 212 and then to
the successor node, A-EOP, with Index Number 6. As this
node has been visited, it is marked, as per bock 204, with the
process moving to block 206, where the process stops for this
node, as shown in FIG. 31.

Returning to block 202, the B-Entry node is analyzed. The
process moves to block 204, where the node is marked with
the next successive index number, here “8”, as shown in FIG.
3H. The process continues from block 204, to the next node,
as shown in FIG. 31.

The methods as described above are used in the fabrication
of integrated circuit chips.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams

10

20

25

30

35

40

45

50

10

and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.

The descriptions of the various embodiments ofthe present
invention have been presented for purposes of illustration, but
are not intended to be exhaustive or limited to the embodi-
ments disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art without departing
from the scope and spirit of the described embodiments. The
terminology used herein was chosen to best explain the prin-
ciples of the embodiments, the practical application or tech-
nical improvement over technologies found in the market-
place, or to enable others of ordinary skill in the art to
understand the embodiments disclosed herein.

It is expected that during the life of a patent maturing from
this application many relevant methods and systems will be
developed and the scope of the term reachable code is
intended to include all such new technologies a priori.

As used herein the term “about” refers to +10%.

The terms “comprises”, “comprising”, “includes”,
“including”, “having” and their conjugates mean “including
but not limited to”. This term encompasses the terms “con-
sisting of” and “consisting essentially of”.

The phrase “consisting essentially of”” means that the com-
position or method may include additional ingredients and/or
steps, but only if the additional ingredients and/or steps do not
materially alter the basic and novel characteristics of the
claimed composition or method.

As used herein, the singular form “a”, “an” and “the”
include plural references unless the context clearly dictates
otherwise. For example, the term “a compound” or “at least
one compound” may include a plurality of compounds,
including mixtures thereof.

The word “exemplary” is used herein to mean “serving as
an example, instance or illustration”. Any embodiment
described as “exemplary” is not necessarily to be construed as
preferred or advantageous over other embodiments and/or to
exclude the incorporation of features from other embodi-
ments.

The word “optionally” is used herein to mean “is provided
in some embodiments and not provided in other embodi-
ments”. Any particular embodiment of the invention may
include a plurality of “optional” features unless such features
conflict.

Throughout this application, various embodiments of this
invention may be presented in a range format. It should be
understood that the description in range format is merely for
convenience and brevity and should not be construed as an
inflexible limitation on the scope of the invention. Accord-
ingly, the description of a range should be considered to have
specifically disclosed all the possible subranges as well as
individual numerical values within that range. For example,
description of a range such as from 1 to 6 should be consid-
ered to have specifically disclosed subranges such as from 1
to 3, from 1 to 4, from 1 to 5, from 2 to 4, from 2 to 6, from 3
to 6 etc., as well as individual numbers within that range, for
example, 1, 2, 3, 4, 5, and 6. This applies regardless of the
breadth of the range.

Whenever a numerical range is indicated herein, it is meant
to include any cited numeral (fractional or integral) within the
indicated range. The phrases “ranging/ranges between” a first
indicate number and a second indicate number and “ranging/
ranges from™ a first indicate number “to” a second indicate
number are used herein interchangeably and are meant to
include the first and second indicated numbers and all the
fractional and integral numerals therebetween.

US 9,280,446 B2

11

It is appreciated that certain features of the invention,
which are, for clarity, described in the context of separate
embodiments, may also be provided in combination in a
single embodiment. Conversely, various features of the
invention, which are, for brevity, described in the context of'a
single embodiment, may also be provided separately or in any
suitable subcombination or as suitable in any other described
embodiment of the invention. Certain features described in
the context of various embodiments are not to be considered
essential features of those embodiments, unless the embodi-
ment is inoperative without those elements.

Although the invention has been described in conjunction
with specific embodiments thereof, it is evident that many
alternatives, modifications and variations will be apparent to
those skilled in the art. Accordingly, it is intended to embrace
all such alternatives, modifications and variations that fall
within the spirit and broad scope of the appended claims.

All publications, patents and patent applications men-
tioned in this specification are herein incorporated in their
entirety by reference into the specification, to the same extent
as if each individual publication, patent or patent application
was specifically and individually indicated to be incorporated
herein by reference. In addition, citation or identification of
any reference in this application shall not be construed as an
admission that such reference is available as prior art to the
present invention. To the extent that section headings are
used, they should not be construed as necessarily limiting.

What is claimed is:

1. A computer-implemented method for scanning valid
executable paths of a COBOL program to find all reachable
code comprising:

scanning a successive node in paragraphs of the COBOL

program, according to an order of execution of the
COBOL program, wherein each node in the paragraphs
of'said COBOL program is a statement including at least
part of a line of code;

marking the scanned node in accordance with an index

value;

moving to a successive unmarked node of the scanned

node;

analyzing the successive unmarked node for determining a

type of the successive unmarked node, and determining

a continued executable path for scanning based on the

type of the successive unmarked node, wherein deter-

mining the continued executable path for scanning

based on the type of the successive unmarked node com-

prising:

when the successive unmarked node type is an internal
node, successor nodes are scanned until an End of
Paragraph (EOP) node is reached,

when the successive unmarked node type is a CALL
node for a called paragraph, nodes of the called para-
graph are scanned, until an End of Paragraph (EOP)
EOP node is reached,

when the successive unmarked node type is a RESUME
node, and is arrived at after a CALL node was previ-
ously scanned, a return edge is taken to the next suc-
cessive unmarked node,

marking each scanned node with an increased value for
the index;

when an index value of the CALL node is greater than a
node entered after the CALL node, a FALL-
THROUGH edge is taken to a next successive
unmarked node; and

continuing to scan all unmarked successive nodes until

only marked nodes are reachable,

5

10

15

20

25

30

35

40

45

50

60

65

12

wherein all of the valid executable paths in the COBOL
program include all reachable code in the reachable
paragraphs of the COBOL program, and all of the reach-
able code is found in polynomial time.

2. The computer-implemented method of claim 1, addi-
tionally comprising:

storing in storage media, data corresponding to said mark-

ings for each of the nodes scanned.

3. The computer-implemented method of claim 1, wherein
the nodes in the paragraphs of the COBOL program include a
plurality of lines of code.

4. The computer-implemented method of claim 1, wherein
the index includes positive integers.

5. The computer-implemented method of claim 4, wherein
the increased value for the index when marking an unmarked
node is the integer value of the index increased by the positive
integer 1.

6. The computer-implemented method of claim 4, further
comprising: grouping in groups said positive integers of said
marked nodes of each of said plurality of valid executable
paths, and storing said groups in storage media.

7. A computer-implemented method for scanning valid
paths of a COBOL program to find all reachable code com-
prising:

obtaining the COBOL program including code;

traversing nodes of the code consecutively visited, accord-

ing to execution of the COBOL program, with an order

of the traversal being indexed with an index value, in

polynomial time, the traversal dependent upon a visita-

tion status of a unvisited node and a type of the unvisited

node including any return edges, wherein each node of

said nodes is a statement including at least part of a line

of code, and wherein the traversal dependent upon the

visitation status of the unvisited node and the type of

unvisited node comprising:

when the next unvisited node is an internal node, suc-
cessor nodes are consecutively visited until an End of
Paragraph (EOP) node is reached,

when the next consecutive node is unvisited and is a
CALL node for a called paragraph, nodes ofthe called
paragraph are traversed, until an End of Paragraph
(EOP) node is reached,

when a RESUME node is the next consecutive unvisited
node, and is reached after the CALL node was previ-
ously visited, a return edge is traversed to a next
unvisited node,

marking each traversed node by increasing the index
value;

when the index value of the CALL node is greater than
a node entered after the CALL node, a FALL-
THROUGH edge is traversed to the next unvisited
node; and

recording the index values for the order of the traversal of

the nodes.

8. A computer program product stored on a non-transitory
tangible computer readable storage medium for determining
valid executable paths in a COBOL program to find the reach-
able code, the computer program product comprising:

computer usable program code for scanning a successive

node in paragraphs of the COBOL program, according
to an order of execution of the COBOL program,
wherein each node in the paragraphs of said COBOL
program is a statement including at least part of a line of
code;

computer usable program code for marking the scanned

node in accordance with an index value;

US 9,280,446 B2

13

computer usable program code for moving to a successive
unmarked node;

computer usable program code for analyzing the succes-
sive unmarked node for determining a type of the suc-
cessive unmarked node, and determining a continued
executable path for scanning based on the type of the
successive unmarked node, wherein determining the
continued executable path for scanning based on the
type of the successive unmarked node comprising:

when the successive unmarked node type is an internal
node, successor nodes are scanned until an End of
Paragraph (EOP) node is reached,

when the successive unmarked node type is a CALL
node for a called paragraph, nodes of the called para-
graph are scanned, until an End of Paragraph (EOP)
EOP node is reached,

when the successive unmarked node type is a RESUME
node, and is arrived at after a CALL node was previ-
ously scanned, a return edge is taken to the next suc-
cessive unmarked node,

marking each scanned node with an increased value for
the index;

5

10

15

20

14

when an index value of the CALL node is greater than a
node entered after the CALL node, a FALL-
THROUGH edge is taken to a next successive
unmarked node; and

computer usable program code for continuing to scan all

unmarked successive nodes until only marked nodes are

reachable,

wherein all of the valid executable paths in the COBOL

program include all reachable code in the reachable

paragraphs of the COBOL program, and all of the reach-
able code is found in polynomial time.

9. The computer program product of claim 8, additionally
comprising: computer useable program code for storing in
storage media, data corresponding to said markings for each
of the nodes traversed.

10. The computer program product of claim 8, wherein the
index includes positive integers, and the increased value for
the index when marking an unmarked node is the integer
value of the index increased by the positive integer 1.

11. The computer program product of claim 10, further
comprising computer usable program for grouping in groups
said positive integers of said marked nodes of each of said
valid executable paths, and storing said groups in storage
media.

